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An exact, closed solution of the elastic-plastic problem of two slip lines issuing 
at an arbitrary angle from a certain point of the free boundary of a half-plane 
subjected to tension or compression is given by the Wiener - Hopf method. A 

stress concentration describable by a certain stress intensity factor is allowed 

near the end of the slip lines. The beginning of slip line motion is described 
by using a theory analogous to the flow lag theory of Cottrell - kabotnov. 

One of the most interesting questions in principle, in the theory of ideal plasticity, 
is the question of the structure of the plastic deformations which can be concentrated 
in narrow Liiders - Chemov slip layers (located entirely in the elastic domain) or can 
be distributed continuo~ly in some zone {whose volume is ~bstantially different from 

zero). On the basis of experimental data (see [I], for instance) for the existence of 
slip lines, and abrupt passage from the elastic to the plastic mode is necessary on the 

o - e diagram, as is also the presence of a quite definite flow area on the same dia- 

gram. Not only low-carbon steel, but also some other alloys possess such properties 
under appropriate heat treatment Cl]. The presence of a quite definite flow area is, 

generally, ~bstan~ally insufficient for the formation of slip lines. (A titanium alloy, 

possessing this property, is described in particular in [2] ). 
On the other hand, thedistributed plastic zones in an ideal elastic-plastic body are 

transformed in the presence of small holes and notches, into long”tongues” extending 

deep into the body as the external load increases. This fundamental property of plastic 

deformations can be considered established not only experimentally, but also on the 

basis of a number of exact solutions of elastic-plastic problems (for instance&he TrefRz 

solution for continuous shear [3], the Southwell and Allen solution for plane deforma- 
tion [4], and the Cherepanov solution for the plane state of stress [51). Naturally, for 
a sufficiently long tongue it can be considered a certain slip line in the elastic domain, 
i.e., the thickness of the tongue can be neglected as compared to its length. A jump 
(~~ontinuity) in the stress and displacement, which satisfies the usual conservation 
laws, hence occurs on the slip line. 

~euss [6] first conceived of the need to introduce stresses exceeding the yield point 

in the elastic domain in a theoretical study of slip lines. 

1. P 1 a s t i c d e f o I m a t i o n m o d e 1 . Following Reuss CS], let us 
consider the stresses in the elastic domain to exceed the yield point. Under definite 
conditions the origination of a stress concentration at the end of the slip line hence 
follows. Indeed, let a cracklike (‘*thin”) cavity located along the line 0s of the 
xOy plane be filled compactly with material whose yield points is less than for the 

374 



On the initial development of tip lines 375 

main material. (The cavity is considered thin if the conditions h < J% 0% / da < 
1 are satisfied, where h (8) and L are the transverse and characteristic longitudin- 

al dimensions of the cavity). The “filler” material is considered ideally plastic. As 
the external load increases, plastic shear will evidently occur initially in the fine cav- 

ity. The displacement compoent in the tangential plane to the surface of the crack- 
like cavity hence undergoes a d~ontinui~, while the normal displacement is contin- 
uous in this plane. The normal and t~g~tial stresses will also be continues (equili- 

brium conditions). It can moreover be assumed that the tangential stress in the slip 

plane is not dependent on the normal stress in this plane in the limit state. Therefore, 
Z = ‘C., can be taken as the condition for the limit state of a plastic material in a 

thin cavity, where z, is the shear yield point and the stress z is considered to act 

on the edges of the discontinuity. 
Hence, it is seen that as soon as the limit state of the plastic material is reached 

in the thin cavity, a stress concentration can occur near its edge, which is character- 

ized by the elastic asymptotic for a transverse shear crack (with a plastic filler). As 

the external load increases further, this conc~~ation (if such there be) will grow. It 
is hence assumed that the increase in the external loads would be such that the stress- 

es in the main material would be less than its yield point 2 r@,. In other words, the 
stresses d in the elastic domain take on the values 2 a, < o < 2 z&. The exist- 

ence of an elastic equilibrium of the stresses for which the stresses d “slip past” the 

lower yield point 2 Z, without causing plastic deformation is thereby allowed be- 

cause of the “thinness” of the cavity under consideration. 
Therefore, the development of plastic deformation along the thin slip band surroun- 

ded by the elastic domain can be explained, exactly as by Reuss, by the inhomogene- 
ity with respect to plastic deformations inherent in the material beforehand. 

The condition for the occurrence of a stress conc~tration in a small domain at the 

end of the slip line depends, within the framework of this model, on the magnitude of 
the slip viscosity, and thereby, on the stmcutre and strength of the material of this 

domain. 

As is shown above, the stress concentration at the end of the slip line is actually 
characterized in the elastic domain by the elastic asymptotic for transverse shear crack. 

This asymptotic (local for hype&bin) is determined fully by one stress intensity factor 

5, * Let KIIe be the slip viscosity for a transverse shear crack without a filler, 
and Krrcb the slip viscosity for cracks with a plastic filler, From physical consider- 

ations Krrc < K,,,. As the external load increases monotonica~y, the coefficient 
Krr will evidently also grow monoto~cally and slip past the lower limit of the slip 

viscosity K rIe without causing any plastic deformation at the end of the slip line in 
the elastic domain during a certain time, i. e., when the condition 0 d K1rc < h;r 

< KIIcb . When KII = K~~&~ plastic deformation suddenly appears at the end of 
the slip line in the elastic domain and motion of the slip line starts, where %I = 

Km during motion. 
The slip viscosity KIrcb determines the resistance of the material to the develop- 

ment of slip surfaces and is a constant of the material. When such a resistance is neg- 
ligibly small, it can be considered that KrIcb = 0, and the stresses at the end of the 
slip line will be bounded only in this particular case, 

The plastic deformation model presented is characteristic for media with a flow 
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delay, and consequently, just such media will be examined in this paper. 

Realization of any of the possible solutions in practice (for example, the discontin- 
uOuS and COntinUoUS as in these problems) can be explained from the aspect of the gen- 

eral SeleCtiOn principle formulated by Cherepanov [7], and which is an integral gener- 
alization of the Mises maximum principle [S]. 

Let us note some of the solutions with plastic slip lines which are available in the 
literature: The Dugdale solution [9] ( a slip line on the con~nuation of a crack in a 

plate), the solution of M, Ia. Leonov and his colleagues [lo] (for different cases of 
rod torsion and the extension of thin plates with stress concentrators), the Cherepanov 

solution [ll] (one slip line emerging on the free boundary of a half-plane) etc. 

Within the framework of the model presented, an exact solution of the problem of 
two slip lines emerging at an arbitrary angle from a certain point of the free boundary 
of a half-plane subjected to tension of compression is constructed below. A local stress 

concentration described by a certain stress intensity factor is allowed at the “head” of 
the slip line in the elastic domain. The beginning of slip line motion (i. e., the begin- 

ning of the orig~atlon of plastic deformations at the head of the slip line in the elast- 

ic domain) is described within the framework of a theory (*), analogous to the Bow 
lag theory of Cottrell - Rabotnov [E&13], however, the formulated in terms of the 

stress intensity factor (instead of the stress). It is found that the slip lines should make 
a 45” angle with the free boundary of the body, Such a slip line configuration is ob- 
served under plane strain conditions if the site of their origination is fixed in advance 

by using a shallow groove or notch (see Cl], for instance). 

2. Boundary value problem. Let a homogeneous and isotropic 
elastic body occupy the half-plane z > 0 in the oxy plane, where Q arerect- 

ilinear Cartesian coordinates. Irectilinear slip lines of length 1 will emerge at an 
angle 2 a , symmetrica~y relative to the r axis on the boundary of the half-plane 

which is free of external loads (Fig. 1). Without limiting the generality, the length 

1 can be considered one (the characteristic length scale). We shall henceforth use 
the polar co&in&~ r0 with center at the origin of the Cartesian coordinates. Let 

the constant stress CF, = 0 act at infinity. 
We write the boundary conditions of a somewhat different problem thus: 

0 = 0, Tre = 0, 240 = 0 (2.1) 

6 = 3c f 2, q$ = zrfj = 0 

6 = a,, foeI = fT,el = 0, tuel = 0 

8 = a, zre = z, - l/2 U sin 2 a (0 < r i: I), I@,f = 0 fr > f) f2t 3 

Here 00, or, Xra are the stresses, and @a, U, the displacements. The square brack- 

ets &note jumps in the quantities enclosed by the brackets. It is assumed that o > 
2 z,. 

Let the condition 

*) Let US note that in essence only the purely physical qualitative aspect of the 
theory is considered in [12]; the complete three-dim~ional mathematical theory is 

defieloped in [13]. 
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be satisfied at infinity. 

T.&# = 0 (2.3) 

The stresses in the initial problem shown in Fig, 1 

are evidently equal to the stresses and strains obtained 

from the solution of the boundary value problem (2. l)- 
(2.3) plus the stresses b, = I& = 0, fly = (1. 

Because of symmetry relative to the x axis, it, is 
sufficient to construct the solution of the problem for 
9.r / a>e>o. 

3. Derivation of the Wiener - 

Hopf e q u a t i o n. Applying the integral trans- 

formation (p is a complex parameter) 

v*(P) = jkwr”~r (3.1) 

i 

to the equilibrium equations and the strain compatibil- 

ity condition, we obtain 

~~*+=A,cos(p+1)0+A,cos(p-l)O+A,sin(p+l)O+ (3.4) 

A, sin (p - 1) 8 

~a*- = B, cos (p + 1) (n / 2 - 0) + B, cos (p - 1) (n / 2 - 

0) + B, sin (p + 1) (n 1 2 - 0) + B, sin (p - 1) (n / 2 - 0) 

Here &, Hi (i = I, 29 39 4) are unknown functions of the complex parameter 
p to be determined from the transformed boundary conditions. 

Any seven of them are expressed in terms of one unknown function by using seven 
“through” conditions (2. l), transformed in r. 

By using (3.2) -( 3.4) and Hooke’s law, we arrive from the transformed boundary 

conditions (2.1) -( 2.2) to the following system of equations 

(P + 1) -4s + (P - 1) A, = 0 (3. 5) 

A, [(p + 1) - 4 (1 - v)J + (p - I) A, = 0 

B, + B4 = 0, B, (P + 1) + B, (P - 0 = 0 
A, (p - 1) cos (p + 1) a + A, (p - 1) cos (p - 1) a = 

2 B, fp cos p (n / 2 - a) cos cc - sin p (n / 2 - cc) sin al - 
2 B, (p - 1) sin p (n / 2 - a) cos a 

A, (p + 1) sin (p + 1) a + A, (p - 1) sin (p - 1) CL = 

-2BB,(p+1)sinp(n/2-a)cosa-2BB,x 
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[p cosp(n/ 2 - a) cos a + sin p (n / 2 - cc) sin al 

A, sin (p + 1) a = B, cos (p + 1) (n / 2 - a) - 
B, sin (p + 1) (JI / 2 - a) 

We write the solution of the system (3.5) in the form 

A, = C Ip cos a sin pa -t sin p (n / 2 - a) 00s (p3t / 2 - a)1 (3.6) 

AS =-&- [paeosasinpa+sinp ($--cz)cos (~++a) - 

psinpqcos(p-f--pa+a)], AS=A4=O 

B1 = - B, = - C (p cos a sin pa -j- sin a cos pa) sin pn / 2 

Bz = CA, B, = - C 0, + 1) (p - I)-‘A 

A = (p - 1) cos a sin pa cos pn I 2 

Let us introduce the following unction 

Y- (p) = s’[o,] Ja&” dr, F (p} = 3 T,$(t+, a) r”dr 
0 1 

The function Y- (p) is analytic in the half-plane Re p > -1, while the functions 

IJ? (p) is analytic in the half-plane Re p < 1. 
By using the functions introduced, we can write conditions (2,2) as 

8 = a, b,*l = Y- (p), Q* (p, a) = Y+ (p) + F (p) (3. 7) 

F(P) = Sr~* - +asin 2a Pdr 1 
0 

By using (3.21, (3.4), (3.6), we obtain 

‘r+-(P)+F(P) = -gg(P) (3.8) 

Y’(P) = $$- sin pn; 

y (p) = 2 p2 ~0s~ a sine pa + sin p (n I 2 + a) x 
sin p(n / 2 - a) - sin2 p (33 f 2 - a) cos 2 a + p sin 2 u x 
sin pn / 2 cos p (n / 2 - 2 a) 

Eliminating the functions c (P) fr om the two relationships in (3.81, we arrive at 

the functional Wiener - Hopf equation 

Y+ (p) + F (p> = l/4 ctg pnG (P) Y- (P) 
(3.91 

G(P)=~- m;P,r [ 4~” cos2 a sin2 pa + cos 2pa + 

2~si~2~sin~~osp(~-2~) -220s2asin2p (+-a)] 
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4. Solution of the Wiener --Hopf equation. The 
functional equation (3.9) holds in the strip f Re p 1 < 1. The function G (p) poss- 
esses the following properties: 

a) The function G (p) is meromorphic, where all the poles located at the points 
P = k U2 + n (n = 1, 2, 3, . . .), ace simple; 

b) The function G (p) has neither poles nor zeros anywhere on the imaginary 

axis with the exception of the point p = 0 where it has a second order zero, where 

0 P 
2(n/2 - cnj2cos 2 al -j- 0 (p”) (p -+ 0) 

c) as p 4 00 along the imaginary axis G (p) -+ 1 becau- 

se of the inequality a < ar I 2. 

n+ 

~ 

G (p) = pa 12 (a” - n2 / 4) - R sin 2 cx + 

Let 11s consider the contour L consisting of the imaginary 
0 axis (with the exception of a small symmetric segment around 

the origin) and a right semi- circle of small radius with center at 

the origin (Fig. 2) in the p plane. The direction of traversing 
L II- the contour agrees with the direction of the imaginary axis. We 

Fig. 2 
denote the domains to the left and right of the contour L by 

D+ and D-, respectively. 

The function G (p) can be represented in the form 

G (p) = G+ (P) / G- (P) (P E L) (4.1) 

1 
exp 2ni S 

InG (t) dt = G+(P) (P E.Z D+) 
t--P 

L G- (P) (P E D-1 
(4.2) 

The functions G+ (p) and G- (p) are analytic and have no zeroes in the domains 
D+ and D- , respecttvely; they tend to one at infinity. 

Let us use the following known representation (see [14,15J, for example): 

P ct3 P* = AT+ (P) R- (P) (4.3) 

&I* (P) = r (1 F P) / r ($12 ‘$;: P) 

According to the properties of Gamma functions, the function K+ (P) is analytic 

and has no zeroes for Re p < ‘i/2, while the function K- (p) is analytic and has 

no zeroes for Rep > -l/2 . Moreover, according to the Stirling formula we have 

If” (P) = Y’TF + 0 (1) (P c+ m) (4.4) 

Taking the factorization of (4. l), (4.3) into account, (3.9) can be written thus 

y’+ (PI 
K+ 0’) G+ 0.‘) + 

F(p) K-(p) Y-(p) @EL) 
K’ (P) G+(P) = 4pG- (P) 

Now, let us use the following representation 

F (PI 
K+ (PI G+ (~1 

= F+(p)---(P) (PEL) 

(4.5) 

(4. 6) 

1 ’ s F (t) at F+ (l-9 (P E 0’) 
2ni s+(t)G- (t) t--p = 

L F- (PI (P E D-) 
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Substituting (4.6) into (4.5), we obtain 

.+;$i (pj + F+(P) = “-$;-‘;-,,‘“! + F- (P> (4.7) 

The left side of this equation is analytic in D+, and the right side in D-. On the 
basis of the principle of continuous extension, they equal the same function analytic 
in the whole p plane. In order to find this single analytic function, the behavior of 

the desired functions Yv+ (p) and Ye (p) must be studied at infinity as p + 00. 
This behavior is determined from the known asymptotic near the end of the slip line 

for 8 = a, r c, 1 (see [16], p. 75) 

Y-(p)=- 

On the basis of (4,2), (4.4) and (4.8), the single analytic function in (4.7) tends to 
zero as p 4 m. Therefore, by the Liouville theorem it equals zero indentically 

in the whole p plane. Hence, the solution of the Wiener - Hopf equation has the 

form 

Y+ (p) = - F+ (P) K+ (P) G+ (P) (4. 9) 

Y-(p) = - 4pt - (P) G- (P) 
h-- (P) 

(4. 10) 

Hence, determining the function c (p) by using (3. S), we find the Mellin transform 
of the desired stresses, and the stresses themselves after inverting the transforms, 

5. Analysis of the solution. Let us find the stress intensity fact- 

or KII at the vertex of the slip line for 0 = a. Using (4.8), (4. 9), (4. 2) and 

(4.4) as p -+ 00, we find 

F @) 
K+(t) G’ (f) 

d! 

According to (3.7), the function F (p) will evidently have the form 

F(p) = &(r#--- +sin2a) 

(5. 1) 

(5.2) 

Substituting this expression into (5.1) and evaluating the integral by using residue the- 
ory, we find (the formula is written in dimensional parameters) 

(5.3) 

Transforming the formula (4.2), we find 

W)=l-&[ 4t2 co9 a sh2 ta + ch 2ta - 
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2t sin 2a sh t +ch t(+- 29 + 2 cos 2a sh*t (+ -a)] 

A graph of the dependence of &I / (Ovj) on the angle a is constructed on an 

electronic compter for Z, = 0 and is presented in Fig. 3. It is seen that the qnanti- 

ty &I I (4~) reaches the maximum value 0.86 for a = 45”. 

Fig. 3 

=-=K 

Y & 

\ 

Fig, 4 

Let us find the stress as r + 0 and 0 < 8 < a in the initial problem display- 
ed in Fig. 1. After some calculations we obtain 

2% cre = T-&i&- CO@ 0, u, = & sin* 0, zre = S-sin 20 

The factor Krl in the initial problem will evidently be determined by the same 

formula (5.3). 

6. S 1 i p 1 i n e m o t i o n. It is natural to assnme that the slip line will be 
developed in that direction a where the maximum value of the coefficient fl;r is 

achieved, i.e., at a = 45” according to Fig, 3. This result is in good agreement 

with experimental data. 
Let us now study slip line motion for a monotonic increase in the intensity factor 

&I. We assume: 

a) If the stress intensity factor KII is less than a certain constant of the mater- 

ial Kxk , then no slip line motion will occur for a monotonic increase in KIr ; 

b) If the stress intensity factor KII is greater than a certain constant of the mat- 
erial Krfet then slip line motion starts as time e elapses from the beginning of the 

loading (for K 11 = 0) , where the time z is determined by the following lag cond- 
ition: 

t;( I f- &I dt=t 
KII c 

(6.1) 

where ts is some time constant, and f (5) is a certain monotonically increasing 
function determined from test; 

c) The stress intensity factor Krr equals the constant of the material KIIc for 

slip line motion. 
The model presented is displayed in the form of a Il(;r - Al diagram in Fig. 4, 

where Al is an increment in the slip line length, 
This model is analogous to the Clark - Cottrell - kabotnov flow lag model for 
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the usual specimens with a cr - e diagram if the analogy Kr1 t-, o, Al t+ 8 is 
taken into account (see [lS] ). 

Let us take the function f (5) in the following form [13$ 

f (x) = xn 

where n is some constant determined from experiment. 
According to (5.3), (6.1) and (6.2), we obtain 

(6. 2) 

dt = 1, t, = to [G+ (- I)]” 
(6. 3) 

0 

which agrees, to the accuracy of the notation, with the corresponding formula in the 

theory of Rabotnov [13] governing the time for plastic deformations to originate in a 
rod extended by the stress (T . 

Therefore, this structural model yields an additional justification for the Rabotnov 
phenomenological theory. 

Let us determine the time ‘G of the beginning of motion for the following two 
modes of increasing the load o: 

a) The load is elevated instantly to the magnitude u and then remains invariant 

with the lapse of time. In this case, we have on the basis of (6.3): 

z = t, @jn (a> 2z,) 

b) The load is increased at the constant rate U, i. e., (I = 2 5 + at. 
this case, we have on the basis of (6.3): 

In 

z _ - t* (a + 1) - 1 n 
a KfIelli(n+l) 

Therefore, the time ? diminishes tending to zero, as the load f3 or the velocity u 

increase, but tends to infinity for CJ --+ 2 it, or for u + 0 , 
These results are, at least qualitatively, meaningful, 
The length of the slip line during its motion is determined from the condition KII 

= Km Hence, we find by using (5.3). 

0 = 22, + 
2Jf/z 
- G+ (- 1) Knc 

va- 
(0 > 2%) 

Displayed schematically in Fig. 5 by a dashed line is the curve (6.4) of the dependen- 
ce of 0 on 1. It evidently shows that the development of the slip line is unstable 

for a>2TS. This result also agrees qualitatively with experimental data. 
Let us estimate the magnitude of the factor Kire by starting from the fact that it 

describes the stationary development of the end of the “plastic tongue” along its 21 

axis for an infinitely slow increase in the external load (see Fig. 6 where the tip zone 

of the tongue developing from a shallow notch is displayed, for instance). We consid- 

er the tongue width constant, equal to h; the quantity h is of the order of the char- 

acteristic linear dimension of the groove. We find K1re = h~,v/il- from dimensional 

analysis considerations (h is some dimensionless factor). 
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Fig. 6 

Fig. 5 

For instance, if ra = i0 kg/mm2 
mm3/2 This quantity is quite small: 

and h = iO-’ cm , then KIIe z 0.3 kg/ 
its corresponding value of the irreversible work 

expaided in advancing the tongue tip a single length along the zl axis is approxim- 

ately one-twentieth of the surface energy of glass. 
An analogous theory can be developed for cracks of normal discontinuity in carbon 

steels. 

The authors are grateful to V. D. Kliushnikov for discussing the research. 
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